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Introduction to the paper on ‘evidence of in situ biodegradation of
phenanthrene in PAH-contaminated sewage water revealed by DNA-SIP

coupled with pure culture isolation'

Jibing Li

Polycylic aromatic hydrocarbons (PAHSs), as a type of hydrophobic organic
compounds with fused aromatic rings, which can generate from both natural and
anthropogenic processes, has posed a serious hazard to the health of human beings
and other living organisms (Baek et al., 1991; Xue & Warshawsky, 2005). Because of
their highly toxicity, mutagenicity, and carcinogenicity, the United States
Environmental Protection Agency has classified PAHs as priority pollutants in
ecosystems since the 1970s (Keith & Telliard, 1979 ). PAHSs released into the
environment could be removed through physico-chemical methods and
bioremediation. However, the conventional physical or chemical technologies have
drawbacks as a result of high cost and difficulty in operation, and furthermore they
can cause secondary pollutions to the environment (Mamma et al., 2007).
Bioremediation, based on certain microorganisms, is a cheap and effective technique
to remove or neutralize pollutants from a contaminated site. Yet the primary process
for effective removal of PAHSs is bioremediation (Harayama, 1997; Wilson, 1993).

In order to explore the fate of these contaminants, considerable efforts based on
traditional cultivation studies (cultivation-based techniques) have been concentrated
in the isolation and identification of microorganisms able to degrade them. Hitherto,
many reports are available on microorganisms capable of degrading PAHs. Most of
these bacteria belong to the genera Agmenellum, Aeromonas, Alcaligenes,
Acinetobacter, Arthrobacter, Bacillus, Berjerinckia, Burkholderia, Comamonas,
Corynebacterium, Cyclotrophicus, Flavobacterium, Moraxella, Micrococcus,
Mycobacterium,  Marinobacter, Nocardioides, Pasteurella, Pseudomonas,
Lutibacterium, Rhodococcus, Streptomyces, Stenotrophomonas, Sphingomonas, Vibrio,

3



#HYHE 2006F6 A F+—H

Paenibacillus and others (Daane et al., 2002; Jiang et al., 2015; Juhasz et al., 1997;
Juhasz et al., 2000; Jung & Park, 2015; Kim et al., 2005; Lease et al., 2011; Samanta
et al., 2002; Seo et al., 2009; Van Hamme et al., 2003; Wong et al., 2002; Zhao et al.,
2008). Cultivation-based technique provides us with clues on how pollutants are
biodegraded and the PAH degradation pathways. Furthermore, the genes associated
with the degradation process have been identified, with particular emphasis given to
the PAHSs ring hydroxylating dioxygenase (PAHs-RHD) (Cebron et al., 2011; Moser
& Stahl, 2001) and PAHSs ring cleaving dioxygenase (PAHs-RCD) such as catechol
dioxygenase (CAT) (Cebron et al., 2015; Peng et al., 2008) and protocatechuate
dioxygenase (PACH) (Ohlendorf et al., 1987; Singleton D R & Schwartz, 1974;
Thomas et al., 2016). However, microbial isolates are difficult to obtain and this
method has proven to underestimate the diversity of the prokaryotic world greatly
(Oren, 2004). In addition, it fails to explain the complicated interactions of the
members of microbial communities with each other in their native environment (Jones
etal., 2011).

In recent years, cultivation-independent methods, which can effectively evaluate
the prokaryotic diversity of complex systems (Breznak, 2002; Rapp€& Giovannoni,
2003), have been used to estimate the microbial degradation of PAHs (Huang et al.,
2009; Jeon et al., 2003; Jones et al., 2008; Singleton et al., 2007). Metagenomic
methods have revolutionized our ability to study the microbial communities in the
environmental samples as they can provides higher resolution of the structure of
complex microbial communities than conventional cloning and sequencing methods
(Gutierrez, 2011). However, the metabolic feature of an organism cannot be inferred
accurately by using this approach. Stable-isotope probing (SIP) is a
cultivation-independent technique that circumvents the requirement to isolate an
organism for the sake of the assessment of metabolic responses and links its identity
to function (Dumont & Murrell, 2005). This technique has been used successfully on
environmental samples by feeding microorganisms a stable isotope-labeled substrate
to label the microbial DNA, allowing the identification and characterization of the
target microorganisms that previously escaped detection, especially for those that are

4
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not amenable to cultivation (Jiang et al., 2015). To date, SIP has been used to identify
a great number of bacteria capable of degrading the PAHs (Gutierrez et al., 2013;
Jones et al., 2011; Jones et al., 2008; Singleton et al., 2007).

Phenanthrene (PHE) is commonly used as a model compound for PAH
biodegradation studies due to its ubiquity in nature and the fused-ring structure in an
angular fashion (Jiang et al., 2015; Seo et al., 2009). Hitherto, SIP studies undertaken
on PAHs biodegradation are limited to contaminated soil and water, such as road
runoff polluted soils (Martin et al., 2012; Regonne et al., 2013), polluted soil from a
former manufactured-gas plant site (Jones et al., 2011), and oil-contaminated waters
from the Deepwater Horizon site (Gutierrez et al., 2013). However, SIP has not yet
been applied to examine potential PAH-degrading microbial groups in
PAH-contaminated sewage waters. In this study, DNA-SIP was applied to a sewage
water sample in order to link the phylogenetic identity of bacterial taxa with their
responsibilities for this in situ PHE degradation. In addition, cultivation based
techniques and metagenomics were also used to achieve a more complete
understanding of the bacterial communities that contributed to the degradation of PHE.
Furthermore, the PAH specific ring-hydroxylating dioxygenase (PAH-RHD) and PAH
ring cleaving dioxygenase such as catechol dioxygenase (CAT) and protocatechuate
dioxygenase (PACH) were investigated by analysis of relevant sequences amplified
from the !3C-DNA enriched fraction or the DNA extracted from
isolated PHE degraders. We hope to provide new useful information for the

bioremediation of the PAH-contaminated sites and reliably theoretical basis.
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Concentrations and source apportionment of atmospheric polycyclic
aromatic hydrocarbons (PAHS) at a regional background site of East

China: abstract
Mao Shuduan

1. Introduction
Polycyclic aromatic hydrocarbons (PAHS) as an important class of POPs and

culprits of carcinogenicity and mutagenicityt! has aroused a wide concern. As a
largest country in the PAHs emissions?, China has been reported with high
concentrations of PAHs B3, Eastern China (27-40N) is the best sampling location
for capturing the outflow plume of air pollutants from China to west Pacifict™%. In
order to investigate the concentration levels, evaluate the influence of meteorological
conditions and apportion the sources of atmospheric PAHs in eastern, Ningbo
Atmospheric Environment Observatory(NAEO, 29°40.8'N, 121°37'E, 550 m ASL)
was selected as a regional background site. 16 USEPA priority PAHs were analyzed

in air samples collected at NAEO from November 2011 to August 2015.

2. Materials and methods

The 24 h successive air samples

2 ( 36%)

were collected once a week at NAEO
by high volume air samplers with

glass fiber filter (GFF) and

1 (45%),

Ninigbo

Source * at 29.68 N 121.62E

polyurethane foam (PUF, 6.5 cm 3 (12)
diameter, 7.5 cm length). Selected Ui

samples of each fortnight from

November 2011 to August 2015 were the majorF é?}t;ir;enzag? 2:irngn;itti;;r;l?r:gajectories

used in my study. Chemical analysis procedure mainly included Soxhlet extraction,

purity and GC-MS analysis.

3. Results and discussion
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3.1 Concentration of PAHs

The sum of the measured 16 PAHs (X16PAHs) of gaseous PAHs and
particulate-bound PAHs in air ranged from 2.69~108ng/m® and 0.02~56.66 ng/m?,
with arithmetic means of 22.94+15.67ng/m® and 10.87#14.53 ng/m®, respectively.
The concentrations of total (gaseous+ particulate-bound) Xi16PAHs ranged from
3.89~130.25 ng/m?, with a mean value of 33.81426.13 ng/m°. Compared with the
mean values of gaseous Xi6PAHS(32.4#18.1 ng/m®), particulate-bound
T16PAHSs(12.9414.8 ng/m?®) and total 16PAHs(46.0423.4 ng/m®) from 2009 to 2010
reported by Liu®, Our results of PAHs from 2011 to 2015 colleted at the same
sampling site were lower. The decreasing trend possibly indicates a source decrease in

eastern China.

The seasonal

B gaseous PAHs
B particulate-bound PAHs
—=—temperature

trend of PAHs with

T

highest

of £16PAH,ng/m’
8 g g
Tempertature, K

ation

concentrations  in

Concentr:
S
T

winter and lowest in

summer were

Date
Fig.2 Concentrations of PAHSs.

observed in this

study, which was agreement with Liul®l. In summer, the concentrations of gaseous
>16PAHs were significantly higher (P<0.05) than particulate-bound X16PAHs. The
average concentration of gaseous X16PAHSs represented more than 92% of the total
Y16PAHs. This may be ascribed to higher temperatures, allowing volatilization of
volatile and semi—volatile PAHs onto gas phase, especially the low molecular weight
PAHSs. During winter, the difference of concentrations between gaseous X1sPAHs and
particulate-bound X16PAHs can be negligible. The average values of gaseous
Y16PAHs and  particulate-bound

I gaseous PAH

Y16PAHs were 55% and 45% of the ., S particutste-bound paH

total X16PAHS, respectively. ue

According to properties of the 16

@
3
!

Releative value, %
8
!

»
S
L

o
!

Z16PAHs

Fig.3 The phase of PAHs in atmosphere
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PAHSs, they can be devided into 2~3-ring (Nap, Ac, Ace, Flu, Phe, Ant), 4-ring(Flua,
Pyr, BaA, Chr), and 5~6-ring PAHs (BbF, BkF, BaP, IP, DBA,BghiP). As shown in
Fig.3, the low molecular weight, volatile 2~3-ring PAHs (Nap, Ac, Ace, Flu, Phe, Ant)
were the main components of gaseous PAHSs, which represented more than 90% of
gaseous X16PAHSs. Particulate-bound PAHs were mainly consisted of BbF. Flua. Pyr
and Chr. They were accounted for more than 50% of particulate-bound X1sPAHS.

3.2 Impact of temperature and atmospheric circulation

The relationship between temperature and gaseous PAHs was invsetigated by
Clausius—Clapeyron equation. It showed that there was no statistically significant
(P>0.05) correlation between gaseous PAHSs or the correlation coefficients were poor
for most congeners (r?=0.04~0.30). It indicated that temperature-driven process of
volatilization was not the controlling factor for PAHSs; the air-surface exchange has

less effect on the concentrations of PAHS.

-
>
1=

Air mass origins were determined ;
[ Direction1 :
[_IDirection2 |
[IDirection3 @ *
["IDirection4

=
~n
o

by employing NOAA’s HYSPLIT

-
o
=3

model to calculate five-day air parcel

®
o
1

back trajectories for each sampling

o
=]
1

period. As a result, four major

»
o

directions were determined, which

N
=)
1

P
T

gaseous PAHs particulate-bound PAHs Total PAHs

(direction 1) northwestern China Fig.4 Comparison of concentrations in different air mass origins

Concentration Range of Gas £16PAH, ng/m®

S

originated from inland central

o
1

(direction 2), Pacific Ocean (direction 3) and South China Sea (direction 4) (Fig.1).
The PAHSs in different air mass origins were selected for sources identification.
As shown in Fig.4, the concentrations of PAHSs in direction 2 were significantly higher
(P<0.05) than other directions. PAHs in direction 3 and direction 4 showed the lowset
concentration levels. It suggested that, atmospheric circulation was the controlling
factor for PAHSs; and the source of PAHs mainly come from northwestern China. Poor
temperature dependence and strong correlation with atmospheric circulation indicated
that long-range transport controls atmospheric levels at the sampling site.
3.3 Source apportionment
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Positive matrix factorization (PMF) was used to

.........

identify PAHs emission sources. A 86x16 (86
samples with 16 PAHSs each) data set was introduced

= E
)

1) [ - ool 20
PV PP CEPL AT S P

into the EPA PMF 5.0 modle and 3 factors were

adopted. The results were shown in Fig.5.

Factor 1 accounted for 40.5% of the sum of the H;_'q"
measured 16PAHSs. It has a high loading of 2~4 ring M
PAHSs, including Nap, Ant and Phe, and moderate SN |
contributions from Flua, Ace, Pyr, Acey and Flu. /L
3 JJ\ RACSY o 5 /\/\/\—\\ o]

Nap and Phe were the dominated compound in the
/\/AALM‘/H\A -

Fig.5 PMF analysis from 16PAHSs data of
total PAH

burning of wood!".It reported that, PAHs at NAEO s J/\/\w
could have similar sources with OC, EC and ™
PM2.51. Higher values of EC, OC/CE ratio and
levoglucosan concentrations in summer at NAEO proved that biomass burning from
surrounding area was one of the most major sources!®l. As displayed in Fig.5, factor 1
had a high contribution value in summer and a low value in winter. Hereby, factor 1 is
characterized as biomass burning.

Factor 2 contributed 20.4% of the X16PAHSs. High loadings of Acey, Flu and Ace,
and moderate loadings of Ant and Phe were observed. Flu has been considered to be
tracers of coal burning!®4l.factor 2 showed high contribution value in winter could be
resulted from coal combustion for heating in Northern China. Hence, factor 2 is
assigned as coal burning sources.

Factor 3 explained 39.1% of the £16PAHS. It was highly loaded with BaA, and
moderately with BbF, BkF, BaP, Ind, DiB, BghiP. BkF, Ind and BghiP were always
assigned as indicators of Vehicular emissions!®°l. Ningbo is located in the southern
part of the Yangtze River Delta (YRD), which is the most developed regions with a

large number of vehicles. Accordingly, factor 3 was attributed to Vehicular emissions.
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ThAREAH) MNP SR IHIC A 5 32 1A 2 18] i Re S PR AR I SE 30t B AR O PRIE 70 1, 207
EHAMTI. SRR, 7] E B & 0% s (Safarik and Safarikova, 1999). [F]
BF, R G K ORI ] 45 24 1) 5 1& 444 (Dobson, 2006; Hola et al., 2015), A
T B Fr20 bR ic AR i (Patel and Lee, 2015),  FE4iE B 0] R FH T8 40 i 40 1) 34
J7 (Alexiou et al., 2006; Mangaiyarkarasi et al., 2016; Reis et al., 2016). M4k, i
WA RN E LR R (MR EOR R ALE 2 71), BA AL R A
WP RKAER AL OISR A 734 i (Feng et al., 2008; Lee et al., 2015;
Sun et al., 2008). 14 A K IURL N F TR 28 A= W) A 88t A 1 2 4 (Baselt et al.,
1996; Baselt et al., 1998; Nehra and Singh, 2015; Yu et al., 2016)

TGN RIORE AR A R 2 (R A AR S AN AT s e, S T B L5 G B fd o
RRE MR T AERG M & . Mg KMk 7 B (magnetic
nanoparticle-mediated isolation, MMI) #%R(Zhang et al., 2015)5&— R F - 5 A7
LI PR 7 B B ARSI R R X . R BN 1) 18 SR AR5 o
NI 2 B ) T REAL RO REPE QR R, I 5T Ydn i e iR &, 1RG5 e
W4 i 2% T R 3 R O A PR A R RORE J RS 1 A s 2) iy Genxd IR A 34 B i
I8, BUESE A VIR b BRI 00 R 5 T 50 RAEPA S A A KR ™ AR
BRZER: Hrb, fEAEARENT, BRfAEYERMABIES, mHAMmmE
YN AR G218 H B Tk AA, 3 B0 M 2R T 45 7 A A P 9 R UKL () B P AT,
I AEAFAEZ s 3) B 77 — BN IR J5 , W NI w BEva #4770 &, RETER1S AT
T EY) . AR Y TR — 2 E s o AR T B AT A B . [
I, A3 FH Ja BOREVE AR ROk AT sl 85 A I (Lin et al., 2015). LA fif B an ]
1(Zhang et al., 2015),
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